EPD - ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804

PUBLISHER
PROGRAMME OPERATOR
OWNER OF THE DECLARATION
DECLARATION NUMBER
DECLARATION NUMBER ECOPLATFORM
ISSUE DATE
VALID TO
NUMBER OF DATASETS IN EPD

Bau EPD GmbH, A-1070 Vienna, Seidengasse 13/3, www.bau-epd.at Bau EPD GmbH, A-1070 Vienna, Seidengasse 13/3, www.bau-epd.at TIROLER ROHRE GmbH Bau EPD-TRM-2017-1-ECOINVENT ECO EPD Ref. No. 00000524 31.08.2017 31.08.2022 6

TRM - Piling systems Tiroler Rohre GmbH

1 General information

Product name	Declared Product / Declared Unit	
TRM Piling System	1 m ductile piles with the nominal dir	nensions:
Declaration number]	
EPD-TRM-2017-1-ECOINVENT	Table 1: Dimensions	
	Nominal outside diameter [mm]	Nominal wall thicknoss [mm]
Declaration data		
Specific data	118	9.0
Average data	118	10.6
	170	9.0
Declaration based on	170	10.6
	170	13.0
Name of the PCR: Construction products made of cast	170	13.0
iron.	Number of datasets in this FPD docu	ment: 6
PCR-Code: 2.16.8, Version: 1.0 as of 10.6.2017		
(PCR tested and approved by the independent expert		
committee = PKR-Gremium)	Range of validity	
	The EPD are representative for ductil	e piles of the site Hall in Tirol of the
The owner of the declaration is liable for the	company Tiroler Rohre GmbH with th	ne aforementioned nominal dimensions.
underlying information and evidence;		
Bau EPD GmbH is not liable with respect to		
manufacturer information, life-cycle assessment data		
and evidences.		
Turne of declaration of new FN 15804	Data base, software, version	
From cradio to gravo	Data base ecoinvent 3.3, system moc	lel "Cut-off by classification",
	Software GaBi 7.3	
Author of the Life Cycle Assessment (LCA)	The CEN standard EN 15804 serves a	s the core-PCR.
DiplIng. Dr. techn. Ilse Hollerer	Independent verification of the decla	aration according to ISO 14025:2010
Magistrat der Stadt Wien	internally 🖂 exter	nally
Magistratsabteilung 39		
Rinnböckstraße 15	Verifier 1: DiplIng. Dr. sc. ETHZ	Z Florian Gschösser, University of Innsbruck
1110 Vienna	Verifier 2: DiplIng. Therese Dat	xner, M.Sc., Daxner & Merl GmbH
Owner of the declaration	Publisher and Programme operator	
Tiroler Rohre GmbH	Bau EPD GmbH	
Innsbruckerstraße 51	Seidengasse 13/3	
6060 Hall in Tirol	1070 Vienna	
Austria	Austria	

Jubser and

DI (FH) DI DI Sarah Richter Managing Director Bau EPD GmbH

Scherge, ona

DI Dr. sc ETHZ Florian Gschösser Verifier, University of Innsbruck

· Hildeyl Jl

Mag. Hildegund Figl Vice-chairperson of Expert Committee (PKR-Gremium)

baur linere

DI Therese Daxner, M.Sc Verifier, Daxner & Merl GmbH

Note: EPDs of similar product groups from different programmes might not be comparable.

2 Product

2.1 General product description

The TRM-Piling-System is a centrifugally ductile pile tube (ductile cast iron) with a spigot end and a plug-in socket that can be joined to form any desired pile length. The spigot end and the plug-in socket are the essential pile elements that enable the safe and easy ductile pile connection. Driven into the ground, the pile tubes form a rigid connection, absorbing centric forces and bending moments.

Generally, pile tubes are produced with a length of 5 m, an outside diameter of 118 mm or 170 mm and a defined wall thickness. Type 118: Nominal outside diameter = 118 mm, nominal wall thickness = 7.5 mm or 9.0 mm or 10.6 mm Type 170: Nominal outside diameter = 170 mm, nominal wall thickness = 9.0 mm or 10.6 mm or 13.0 mm

2.2 Application

The TRM-Pile-System is applied as a full displacement pile system for the erection of buildings or engineering structures (such as bridges, wind-power and photovoltaic plants, sound protection walls, pipelines, masts) and to secure excavation pits, to stabilize slopes, etc.

The TRM-Pile is driven into the ground, thus effectively transmits the forces from the building into the ground. The TRM-Pile can also be filled with concrete or applied with or without grouting. The subject EPD focuses on the insertion of the pipe tubes into the ground without the consideration of any concrete filling or grouting.

2.3 Product relevant standards, regulations and guidelines

Table 2: Product relevant standards

Standard	Title
OENORM B 2567	Ductile cast iron piles
ETA 07/0169	TRM-Ductile piling - ductile iron pile tubes

2.4 Technical data

Evidence of the mechanical material properties shall be provided by the test method according to OENORM EN 545:2011, sections 6.3 and 6.4.

Table 3: General technical data for ductile cast iron piles

Name	Value	Unit
Iron density	7150	kg/m ³
Tensile strength	≥ 450	MPa
Proportional limit, 0.2%-yield strength ($R_{\rho 0.2}$)	≥ 320	MPa
Notch impact energy	≥10	J
Elongation at fracture	≥ 10	%
Brinell hardness	≤ 230	HB
Pile tube length	5000	mm
Pressure resistance	≥900	MPa
Modulus of elasticity E	170,0001)	MPa

¹⁾ Reference value for static calculations

Table 4: Technical data for ductile cast iron piles depending on dimensions

Туре	Nominal wall thickness [mm]	Longitudinally related mass [kg/m]	Rated value of the normal load capacity <i>N_{sd}</i> without concrete filling of grouting (no loss of wall thickness) [kN]
118	7.5	21.00	833
118	9.0	24.42	986
118	10.6	27.96	1144
170	9.0	37.14	1457
170	10.6	42.54	1699
170	13.0	50.42	2052

2.5 Basic/auxiliary materials

Table 5: Basic materials in mass-%

Ingredients:	Mass-%
Iron ¹⁾	ca. 94%
Carbon ²⁾	ca. 3.5%
Silicon ³⁾	ca. 2%
Ferric by-elements ⁴⁾	ca. 0.5%

¹⁾ Scrap iron.

²⁾ Foundry coke carbon. The coke in the cupola furnace serves as an energy supplier for the scrap melting on the one hand and the setting of the desired carbon content on the other.

³⁾ Silicon is added in the form of SiC-briquettes and/or ferro-silicon.

⁴⁾ Ferric by-elements are found in the steel scrap in different minor quantities (<1%).

2.6 Production

With the help of coke as a reaction and reduction agent, steel scrap and recycled material are smelted in the cupola furnace. Silicon carbide is added as an alloying element as well as the aggregates that enhance slagging. The chemical composition of the smelted basic iron is then constantly monitored through spectral analysis. The smelted basic iron is then kept warm in the channel furnace, a storage medium, and treated with magnesium in the Georg Fischer-Converter, in order to reach the appropriate ductility. The liquid iron is then cast in a centrifuge machine with the De Lavaud-procedure. In order to produce a specific type of pile the machine must be equipped with the corresponding mold (metal form that the liquid iron is poured into). The socket core made of quartz sand seals the inlet of the machine and forms the plug-in socket. With the help of an automatic transport system the glowing pile is pulled out of the cast unit and placed in a furnace for heat treatment in order to achieve the desired mechanic characteristics.

In the course of a final pile treatment, the pile is treated if necessary, measured, tagged and bundled. With a fork-lift the corresponding package units are then taken to a storage area.

2.7 Packaging

The TRM-Pile is bundled with the help of squared lumber and PET binding tapes for storage and transport. Both packaging materials can be used for thermal recycling.

2.8 Conditions of delivery

The ductile cast iron pipes are bundled with the help of squared lumber and PET binding tapes for storage and transport. The size of the individual bundles depends on the type of pile. In case of the type TRM 118 one bundle consists of 15 piles with a dimension of 5.5 m x 0.62 m x 0.42 m. 8 piles of the type TRM 170 form a bundle of 5.5 m x 0.72 m x 0.37 m. The TRM-ductile pile needs to be transported and stored with special care. All relevant regulations for storage at the place of use and the technical provisions must be fulfilled.

2.9 Transport

Within Europe, the ductile piles are transported via truck to their destination and by ship for overseas destinations.

2.10 Processing / Installation

Installation and design of the full displacement piles consisting of ductile pile tubes must correspond with Eurocode 3: Design of steel structures (OENORM B 1993), Eurocode 4: Design of composite steel and concrete structures (OENORM B 1994), Eurocode7: Geotechnical design (OENORM B 1997) and OENORM EN 12699: Execution of special geotechnical work – displacement piles. National regulations must be followed as well.

The pile shoe forms the basis for the first pile tube. All additional pile tubes are inserted into the socket of the element previously driven into the ground, and driven into the construction ground to the final depth by displacing the soil. The excess length is then cut so that the construction ground is level with the planum and used as the starting segment for the next pile. After the driving process the pile can be filled with concrete in order to increase its inner load capacity. Pile heads on top of the piles transmit the force from the building to the piles. Optionally, piles can also have a bigger pile shoe, which forms an annular space along the entire pile circumference that can be continuously grouted with mortar during the driving process by means of a pump. The subject EPD focuses on the insertion of the pipe tubes into the ground without the consideration of any concrete filling.

The installation of the pile tubes is performed with a light manoeuvrable excavator with a hydraulic blow hammer.

As the soil is displaced to the side, there is no excavated earth to deal with. Manual work is reduced to simple physical and safe procedures. All applicable safety precautions for construction sites must be observed

2.11 Phase of utilisation

If installed and designed professionally and if the phase of utilization is not disturbed, no modification of material composition of construction products made of ductile cast iron occur.

2.12 Reference service life (RSL)

Table 6: Reference service life (RSL)

Name	Value	Unit
Ductile iron piles	100 1)	Years

¹⁾ Pile foundations must have a service life that corresponds with the overall construction. According to "Eurocode – Basis of structural design (OENORM EN 1990)" engineering structures (such as bridges) have a service life of 100 years, that is why ductile cast iron piles are assessed with a corresponding service life.

2.13 Re-use and recycling

Reuse and recycling of ductile cast iron is technically feasible but not reasonable under the current ecological and economic conditions. The piles remain in the ground, unless they disturb other construction projects.

2.14 Disposal

The piles are disposed of in rare cases. The EAK-waste code number for iron and steel from construction and demolition is 170405. This EPD, however, is based on the scenario that the piles remain in the ground.

2.15 Further information

For further information about the TRM-Pile-System and possible applications see the website http://trm.at.

3 LCA: Calculation rules

3.1 Declared unit/ Functional Unit

The functional unit is 1 meter [m] pile. The following table serves the conversion into mass [kg]:

Table 7: Longitudinally related mass

Туре	Longitudinally related mass [kg/m]
118 x 7.5	21.00
118 x 9.0	24.42
118 x 10.6	27.96
170 x 9.0	37.14
170 x 10.6	42.54
170 x 13.0	50.42

3.2 System limits

The entire product life cycle is declared. This is an EPD "From cradle to grave".

PROI STAG	DUCT ie		CONSTR PROCES	UCTION S STAGE	USES	STAGE						END-OF-LIFE STAGE			BENEFITS AND LOADS	
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Raw material supply	Transport	Manufacturing	Transport	Construction/Installation	Use	Maintenance	Repair	Replacement	Reconstruction/Renewal	Operationa energy use	Operational water use	Demolition	Transport	Waste processing	Disposal	Reuse-/Recovery-/Recycling potential
x	x	x	х	x	x	х	x	x	x	x	x	x	х	x	x	х

x = included in LCA; MND = Module not declared

A1-A3 Product stage:

The ductile piles are almost exclusively made of the secondary material scrap steel. The system limit was set with the arrival of the scrap iron in the recycling plants. The energy consumption in the recycling plants and the transport to the plant was blamed on this system. The production phase includes the product stages in the plant including the energy supply with the corresponding upstream chains, the production of raw materials, auxiliary materials and packaging; furthermore the transport to the plants, the infrastructure and the disposal of the waste occurring during production.

A4-A5 Construction stage:

Ductile cast iron pile can be designed as unfilled or ungrouted piles or piles with concrete filling and/or grouting. The subject EPD focuses exclusively on the insertion of the pile tubes into the ground without consideration of any concrete filling. Squared lumber and PET binding tapes are thermally recycled.

B1-B7 Use stage:

Generally construction products made of ductile cast iron show no impact on the LCA.

Bau EPD-TRM-2017-1-ECOINVENT

C1- C4 End-of-life stage:

Reuse and recycling of removed ductile cast iron is technically feasible, however, depending on the given situation, the question is whether it is reasonable. If no new building is erected after dismantling the entire construction, the piles remain in the ground, unless they disturb other construction projects, thus preventing additional costs. This EPD is based on the scenario that the piles will not be removed and recycled.

D Benefits and loads:

As the piles will not be recycled, C1-C4 show no benefits. Benefits for thermal disposal of the packaging material under A5 are prohibited according to the "General guidelines for eco balances and requirements of background reports – PKR-part A".

3.3 Process flowchart during service life

Figure 2: Process flow chart during service life

3.4 Estimations and assumptions

The ecoinvent databank holds only one data set for silicon carbide, typical for wafer production, having too much environmental impact due to its high SiC content compared to the SiC used for the casting production. It is assumed that an economic allocation reflects reality in a better way.

Cast steel is a special steel with no data set. As the cast is below 1 kg per t of casting the data set for chrome steel is regarded as sufficient.

As the infrastructure have just a minimum environmental impact, the machines were only illustrated with the main components steel and cast.

3.5 Cut-off criteria

The producer calculated and submitted the amount of all applied materials, energy needed, the packaging material, the arising waste material and the way of disposal and the necessary infrastructure (buildings and machine parks for the production). The measurement values for emissions according to the casting regulations were specified. The material consumption of moulded steel and the graphite coatings were considered. Auxiliary materials, the material flow of which is less than 1% are insignificant, as well as the in-company transports. It can be assumed that the amount of the insignificant processes is below than 5% of the impact categories.

3.6 Background data

Ecoinvent 3.3 with the system model "cut-off by classification" is used as background databank. The software is GaBi 7.3 of the company thinkstep.

3.7 Data quality

All essential data such as energy- and raw material consumption, emissions, transport distances and means of transportation and packaging and infrastructure within the system limits is provided by the producer.

The data is up-to-date (annual average over the production year 2015).

The criteria of the Bau EPD GmbH for data collection, generic data and the cut-off of material and energy flows were observed. The data are plausible

The data is representative for the type 118 and type 170 piles of the company TRM produced in the production year 2015 in the plants Hall in Tirol.

3.8 Reporting period

The applied data correspond with the annual average of the production year 2015.

3.9 Allocation

The system limits for the applied secondary materials steel and iron scrap was set with the arrival of the scrap iron in the recycling plants. The energy consumption in the recycling plants in module A1 was blamed on this system. The transporte to the plants are included in module A2.

The production of ductile cast piles creates fly-ash, slag, coke dust and district heat as by-products. They make a contribution to the operational income of less than 1% and can thus be neglected according to the "General guidelines for eco balances and requirements of background reports – PKR-part A".

Benefits for thermal disposal of the packaging material under A5 do not apply according to the "General guidelines for eco balances and requirements of background reports – PKR-part A".

Reuse and recycling of the piles is technically feasible but not reasonable under the current ecological and economic conditions, thus there are no benefits in module D.

3.10 Comparability

Basically a comparison or an assessment of the EPD-data is only possible if all comparative data sets have been prepared according to EN 15804, if the identical programme specific PKR or possible additional regulations and the same background databank have been applied and all building or product specific features have been considered.

4 LCA: Scenarios and further technical information

4.1 A1-A3 Product stage

According to OENORM EN 15804 no technical scenario-details are required for A1-A3, as the producer is responsible for the accounting of these modules which must not be changed by the user of the LCA.

4.2 A4-A5 Construction process stage

4.2.1 Description of the scenario "Transport to the building site (A4)"

Within Europe the ductile pipes are transported via truck to their destination and by ship for overseas destinations. As only tkm can be entered into the ecoinvent-datasets and as parameters such as average fuel consumption, average utilization, etc. are predefined, no table for parameters for the transport description are provided. The dataset "RER: transport, freight, lorry 16-32 metric ton, EURO 4"was applied. This is only true for the transport by ship. The dataset "GLO: transport, freight, sea, transoceanic ship"was applied.

4.2.2 Description of the scenario "Installation of the product in the building (A5)"

The piles are driven into the ground with an excavator equipped with a with a hydraulic blow hammer. Depending on the soil condition there might be strong fluctuations, however, based on many years of experience, it is known that an excavator with a performance of 150 kW and a weight of 25 t, consumes 150 l of gasoline on an 8 hour workday. With an average work performance of 300 m piles per day this amounts to a consumption of 0.5l gasoline per pile m. This value is a rough estimation. A finer estimation of the gasoline consumption of the various types of piles is not possible.

Table 8: Parameter list of the scenario "Installation of the product in the building (A5)"

Parameters to describe the installation of the product in the building (A5)	Value	Measurand
Auxiliary substances for the installation (specified according to substances)	0	kg/m
		l/m
Auxiliary substances for the installation (specified according to type)	-	-
Water demand	0	m³/m
		l/m
Other resources requirement	0	kg/m
		l/m
Energy consumption	0	kWh/m or MJ/m
Other energy carrier: gasoline	17.8	MJ/m
Material loss on the construction site before waste treatment, caused by the installation	0	ka/m
of the product (specified according to substances)		Kg/III
Output-substances (specified according to substances) due to waste treatment on the	0	
construction site, e.g. collection for recycling, for energy recovery or for disposal (specified		kg/m
according to disposal procedure)		
Direct emission in ambient air (e.g. dust, VOC), soil and water	0	kg/m

4.3 B1-B7 Use stage

The Reference Service Life (RSL) is 100 years. During the service life stage the ductile cast iron piles show no material and energy flow relevant for the LCA that means the inputs and outputs equal zero.

4.4 C1-C4 End-of-life-stage

Reuse and recycling of ductile iron is technically feasible but not reasonable under the current ecological and economic conditions. The piles remain in the ground, thus cause no further disposal costs. The inputs and outputs equal zero.

4.5 D Potential of reuse and recycling

As the piles are not removed, benefits for thermal disposal of the packaging material under A5 are prohibited according to the "General guidelines for eco balances and requirements of background reports – PKR-part A" there are no benefits in module D.

5 LCA: Results

The following tables show the results of the functional unit per pile meter [m]. A table in the supplement shows the results per kg pile as additional information.

TRM Pile System Type 118 x 7.5

Table 9: LCA results: Environmental impacts per pile meter [m] type 118 x 7.5

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1-C4	A1-C4 ¹⁾	D	
GWP	kg CO₂ equiv	22.3	2.63	1.78	0	0	26.7	0	
ODP	kg CFC-11 equiv	1.10E-06	4.81E-07	3.11E-07	0	0	1.90E-06	0	
AP	kg SO ₂ equiv	5.57E-02	1.45E-02	1.31E-02	0	0	8.33E-02	0	
EP	kg PO4 ³⁻ equiv	3.68E-02	3.34E-03	3.62E-03	0	0	4.37E-02	0	
РОСР	kg C ₂ H ₄ equiv	6.70E-03	1.25E-03	1.39E-03	0	0	9.34E-03	0	
ADPE	kg Sb equiv	2.21E-05	7.36E-06	1.17E-06	0	0	3.07E-05	0	
ADPF	MJ, H _u ²⁾	272	39.4	25.3	0	0	336	0	
Legend		GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophcation potential; POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources							

Table 10: LCA results: Resource input per pile meter [m] type 118 x 7.5

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1-C4	A1-C4	D
PERE	MJ, H _u	22.1	0.551	0.267	0	0	22.9	0
PERM	MJ, H _u	0	0	0	0	0	0	0
PERT	MJ, H _u	22.1	0.551	0.267	0	0	22.9	0
PENRE	MJ, H _u	291	40.2	25.7	0	0	357	0
PENRM	MJ, H _u	0	0	0	0	0	0	0
PENRT	MJ, H _u	291	40.2	25.7	0	0	357	0
SM	kg	20.7	0	0	0	0	20.7	0
RSF	MJ, H _u	0	0	0	0	0	0	0
NRSF	MJ, H _u	0	0	0	0	0	0	0
FW	m ³	INA ³⁾	INA	INA	INA	INA	INA	INA
Legend PERE = Renewable primary energy as energy carrier; PERM = Renewable primary energy resources as ma utilization; PERT = Total Renewable primary energy; PENRE = Non-Renewable primary energy as energy carrier; PERM = Non-Renewable primary energy as energy carrier; PERM = Non-Renewable primary energy; PENRE = Non-Renewable primary energy as energy carrier; PERM = Non-Renewable primary energy; PENRE = Non-Renewable primary energy as energy carrier; PERM = Non-Renewable primary energy; PENRE = Non-Renewable primary energy as energy carrier; PERM = Non-Renewable primary energy; PENRE = Non-Renewable primary; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Non- renewable second fuels; FW = Use of fresh water						as material ergy carrier; mary energy; econdary		

Table 11: LCA results: Output-flows and waste categories per pile meter [m] type 118 x 7.5

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1-C4	A1-C4	D
HWD	kg	INA	INA	INA	INA	INA	INA	INA
NHWD	kg	INA	INA	INA	INA	INA	INA	INA
RWD	kg	INA	INA	INA	INA	INA	INA	INA
CRU	kg	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0 4)	0 4)	0 4)
MER	kg	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0
Legend		HWD = Hazardous waste disposed; NHWD = Non- hazardous waste disposed; RWD = radioactive waste disposed CRU =Components for re-use; MFR = Material for Recycling; MER = Material for energy recovery; EEE = Exported Energy electric; EET = Exported Energy thermal						ste disposed;

¹⁾ Additional information

 $^{\rm 2)}$ Hu stands for (lower) heating value

³⁾ INA: Indicator Not Assessed: the software GaBi 7.3 shows no waste for the databank ecoinvent 3.3 and the ecoinvent-datasets allow no complete registration of the water flows.

TRM Pile System Type 118 x 9.0

Table 12: LCA results: Environmental impacts per pile meter [m] type 118 x 9.0

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1-C4	A1- C4 ¹⁾	D
GWP	kg CO₂ equiv	25.9	3.06	1.79	0	0	30.7	0
ODP	kg CFC-11 equiv	1.28E-06	5.60E-07	3.11E-07	0	0	2.16E-06	0
AP	kg SO₂ equiv	6.47E-02	1.69E-02	1.31E-02	0	0	9.47E-02	0
EP	kg PO4 ³⁻ equiv	4.28E-02	3.89E-03	3.62E-03	0	0	5.03E-02	0
POCP	kg C ₂ H ₄ equiv	7.79E-03	1.45E-03	1.39E-03	0	0	1.06E-02	0
ADPE	kg Sb equiv	2.57E-05	8.56E-06	1.17E-06	0	0	3.55E-05	0
ADPF	MJ, H _u ²⁾	316	45.8	25.3	0	0	387	0
GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP Legend Acidification potential of land and water; EP = Eutrophcation potential; POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fos ADPF = Abiotic depletion potential for fossil resources					zone layer; AP = ntial for non-fossi	l resources;		

Table 13: LCA results: Resource unit per pile meter [m] type 118 x 9.0

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1-C4	A1-C4	D
PERE	MJ, H _u	25.7	0.551	0.267	0	0	26.5	0
PERM	MJ, H _u	0	0	0	0	0	0	0
PERT	MJ, H _u	25.7	0.551	0.267	0	0	26.5	0
PENRE	MJ, H _u	339	46.7	25.7	0	0	405	0
PENRM	MJ, H _u	0	0	0	0	0	0	0
PENRT	MJ, H _u	339	46.7	25.7	0	0	405	0
SM	kg	24.1	0	0	0	0	24.1	0
RSF	MJ, H _u	0	0	0	0	0	0	0
NRSF	MJ, H _u	0	0	0	0	0	0	0
FW	m ³	INA ³⁾	INA	INA	INA	INA	INA	INA
Legend		PERE = Renewable primary energy as energy carrier; PERM = Renewable primary energy resources as materia utilization; PERT = Total Renewable primary energy; PENRE = Non-Renewable primary energy as energy carrie PENRM = Non- Renewable primary energy as material utilization; PENT = Total Non-Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as material; RSF = Use of renewable secondary fuels; NRSF = Non- renewable secondary FW = Use of fresh water						as material ergy carrier; mary energy; econdary fuels;

Table 14: LCA result: Output-flows and waste categories per pile meter [m] type 118 x 9.0

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1-C4	A1-C4	D
HWD	kg	INA	INA	INA	INA	INA	INA	INA
NHWD	kg	INA	INA	INA	INA	INA	INA	INA
RWD	kg	INA	INA	INA	INA	INA	INA	INA
CRU	kg	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0 4)	0 4)	0 4)
MER	kg	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0
Legend		HWD = Hazardous waste disposed; NHWD = Non- hazardous waste disposed; RWD = radioactive waste disposed CRU =Components for re-use; MFR = Material for Recycling; MER = Material for energy recovery; EEE = Exported Energy electric; EET = Exported Energy thermal						ste disposed;

¹⁾ Additional information

 $^{\mbox{\tiny 2)}}$ Hu stands for (lower) heating value

³⁾ INA: Indicator Not Assessed: the software GaBi 7.3 shows no waste for the databank ecoinvent 3.3 and the ecoinvent-datasets allow no complete registration of the water flows.

TRM Pile System Type 118 x 10.6

Table 155: LCA results: Environmental impacts per pile meter [m] type 118 x 10.6

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1-C4	A1- C4 ¹⁾	D
GWP	kg CO2 equiv	29.6	3,50	1,79	0	0	34,9	0
ODP	kg CFC-11 equiv	1.47E-06	6.41E-07	3.11E-07	0	0	2.42E-06	0
AP	kg SO ₂ equiv	7.41E-02	1.93E-02	1.31E-02	0	0	1.07E-01	0
EP	kg PO ₄ ³⁻ equiv	4.90E-02	4.45E-03	3.62E-03	0	0	5.70E-02	0
РОСР	kg C ₂ H ₄ equiv	8.92E-03	1.66E-03	1.39E-03	0	0	1.20E-02	0
ADPE	kg Sb equiv	2.95E-05	9.81E-06	1.17E-06	0	0	4.04E-05	0
ADPF	MJ, H _u ²⁾	362	52.5	25.3	0	0	440	0
Legend	gend GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophcation potential; POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources							I

Table 16: LCA results: Resource unit per pile meter [m] type 118 x 10.6

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1-C4	A1-C4	D
PERE	MJ, Hu	29.4	0.734	0.267	0	0	30.2	0
PERM	MJ, Hu	0	0	0	0	0	0	0
PERT	MJ, Hu	29.4	0.734	0.267	0	0	30.2	0
PENRE	MJ, Hu	388	53.5	25.7	0	0	454	0
PENRM	MJ, Hu	0	0	0	0	0	0	0
PENRT	MJ, Hu	388	53.5	25.7	0	0	454	0
SM	kg	27.6	0	0	0	0	27.6	0
RSF	MJ, Hu	0	0	0	0	0	0	0
NRSF	MJ, Hu	0	0	0	0	0	0	0
FW	m ³	INA ³⁾	INA	INA	INA	INA	INA	INA
Legend PERE = Renewable primary energy as energy carrier; PERM = Renewable primary energy resources as utilization; PERT = Total Renewable primary energy; PENRE = Non-Renewable primary energy as ener PERE Non- Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as material utilization; PENRT = Non- Renewable primary energy as material utilization; PENRT = Non- Renewable primary energy as material utilization; PENRT = Non- Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as material utilization; PENRT = Non- Renewable primary energy as material; RSF = Use of renewable secondary fuels; NRSF = Non- renewable second Use of fresh water					as material ergy carrier; mary energy; SM ndary fuels; FW =			

Table 17: LCA result: Output-flows and waste categories per pile meter [m] type 118 x 10.6

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1-C4	A1-C4	D
HWD	kg	INA	INA	INA	INA	INA	INA	INA
NHWD	kg	INA	INA	INA	INA	INA	INA	INA
RWD	kg	INA	INA	INA	INA	INA	INA	INA
CRU	kg	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0 4)	0 4)	O ⁴⁾
MER	kg	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0
Legend HWD = Hazardous waste disposed; NHWD = Non- hazardous waste disposed; RWD = radioactive waste of CRU =Components for re-use; MFR = Material for Recycling; MER = Material for energy recovery; EEE = Exported Energy electric; EET = Exported Energy thermal					ste disposed;			

¹⁾ additional information

²⁾ Hu stands for (lower) heating value

³⁾ INA: Indicator Not Assessed: the software GaBi 7.3 shows no waste for the databank ecoinvent 3.3 and the ecoinvent-datasets allow no complete registration of the water flows.

TRM Pile System Type 170 x 9.0

Table 18: LCA results: Environmental impacts per pile meter [m] type 170 x 9.0

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1-C4	A1- C4 ¹⁾	D
GWP	kg CO₂ equiv	39.4	4.65	1.79	0	0	45.8	0
ODP	kg CFC-11 equiv	1.95E-06	8.51E-07	3.11E-07	0	0	3.11E-06	0
AP	kg SO₂ equiv	9.84E-02	2.57E-02	1.31E-02	0	0	0.137	0
EP	kg PO4 ³⁻ equiv	6.51E-02	5.92E-03	3.62E-03	0	0	7.46E-02	0
POCP	kg C ₂ H ₄ equiv	1.19E-02	2.21E-03	1.39E-03	0	0	1.55E-02	0
ADPE	kg Sb equiv	3.91E-05	1.30E-05	1.17E-06	0	0	5.33E-05	0
ADPF	MJ, H _u ²⁾	481	69.7	25.3	0	0	576	0
Legend GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophcation potential; POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossi ADPF = Abiotic depletion potential for fossil resources					l resources;			

Table 19: LCA results: Resource unit per pile meter [m] type 170 x 9.0

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1-C4	A1-C4	D
PERE	MJ, H _u	39.1	0.975	0.267	0	0	40.3	0
PERM	MJ, H _u	0	0	0	0	0	0	0
PERT	MJ, H _u	39.1	0.975	0.267	0	0	40.3	0
PENRE	MJ, H _u	515	71.1	25.7	0	0	612	0
PENRM	MJ, H _u	0	0	0	0	0	0	0
PENRT	MJ, H _u	515	71.1	25.7	0	0	612	0
SM	kg	36.7	0	0	0	0	36.7	0
RSF	MJ, H _u	0	0	0	0	0	0	0
NRSF	MJ, Hu	0	0	0	0	0	0	0
FW	m ³	INA ³⁾	INA	INA	INA	INA	INA	INA
Legend PERE = Renewable primary energy as energy carrier; PERM = Renewable primary energy resolutilization; PERT = Total Renewable primary energy; PENRE = Non-Renewable primary energy Legend PENRM = Non- Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as material utilization; PENRT = Total Non-Renewable Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Non- renewable Use of fresh water					nergy resources ary energy as ene on-Renewable pri renewable secor	as material ergy carrier; mary energy; SM ndary fuels; FW =		

Table 20: LCA result: Output-flows and waste categories per pile meter [m] type 170 x 9.0

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1-C4	A1-C4	D
HWD	kg	INA	INA	INA	INA	INA	INA	INA
NHWD	kg	INA	INA	INA	INA	INA	INA	INA
RWD	kg	INA	INA	INA	INA	INA	INA	INA
CRU	kg	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0 4)	0 4)	0 4)
MER	kg	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0
Legend HWD = Hazardous waste disposed; NHWD = Non- hazardous waste disposed; RWD = radioactive waste d CRU =Components for re-use; MFR = Material for Recycling; MER = Material for energy recovery; EEE = Exported Energy electric; EET = Exported Energy thermal						ste disposed;		

¹⁾ Additional information

 $^{\rm 2)}$ Hu stands for (lower) heating value

³⁾ INA: Indicator Not Assessed: the software GaBi 7.3 shows no waste for the databank ecoinvent 3.3 and the ecoinvent-datasets allow no complete registration of the water flows.

TRM Pile System Type 170 x 10.6

Table 21: LCA results: Environmental impacts per pile meter [m] type 170 x 10.6

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1-C4	A1- C4 ¹⁾	D
GWP	kg CO ₂ equiv	45.1	5,33	1,80	0	0	52.2	0
ODP	kg CFC-11 equiv	2.24E-06	9.75E-07	3.11E-07	0	0	3.52E-06	0
АР	kg SO₂ equiv	1.13E-01	2.94E-02	1.31E-02	0	0	1.55E-01	0
EP	kg PO4 ³⁻ equiv	7.45E-02	6.78E-03	3.62E-03	0	0	8.49E-02	0
РОСР	kg C ₂ H ₄ equiv	1.36E-02	2.53E-03	1.39E-03	0	0	1.75E-02	0
ADPE	kg Sb equiv	4.48E-05	1.49E-05	1.17E-06	0	0	6.09E-05	0
ADPF	MJ, H _u ²⁾	550	79.8	25.3	0	0	656	0
Legend GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophcation potential; POCP = Formation potential of tropospheric ozone; ADPE = Abiotic depletion potential for non-fossil ADPF = Abiotic depletion potential for fossil resources					l resources;			

Table 22: LCA results: Resource unit per pile meter [m] type 170 x 10.6

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1-C4	A1-C4	D
PERE	MJ, H _u	44.7	1.12	0.267	0	0	46.1	0
PERM	MJ, H _u	0	0	0	0	0	0	0
PERT	MJ, H _u	44.7	1.12	0.267	0	0	46.1	0
PENRE	MJ, H _u	590	81.4	25.7	0	0	697	0
PENRM	MJ, H _u	0	0	0	0	0	0	0
PENRT	MJ, H _u	590	81.4	25.7	0	0	697	0
SM	kg	42.0	0	0	0	0	42.0	0
RSF	MJ, H _u	0	0	0	0	0	0	0
NRSF	MJ, H _u	0	0	0	0	0	0	0
FW	m³	INA ³⁾	INA	INA	INA	INA	INA	INA
Legend		PERE = Renewable primary energy as energy carrier; PERM = Renewable primary energy resources as material utilization; PERT = Total Renewable primary energy; PENRE = Non-Renewable primary energy as energy carrier; PENRM = Non- Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Non- renewable secondary fue FW = Use of fresh water						as material ergy carrier; imary energy; econdary fuels;

Table 23: LCA result: Output-flows and waste categories per pile meter [m] type 170 x 10.6

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1-C4	A1-C4	D
HWD	kg	INA	INA	INA	INA	INA	INA	INA
NHWD	kg	INA	INA	INA	INA	INA	INA	INA
RWD	kg	INA	INA	INA	INA	INA	INA	INA
CRU	kg	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0 4)	0 4)	0 4)
MER	kg	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0
Legend		HWD = Hazardo CRU =Compone MER = Material Energy thermal	ous waste dispose ents for re-use; N for energy recov	ed; NHWD = Non IFR = Material for very; EEE = Expor	- hazardous wast ⁻ Recycling; ted Energy electr	e disposed; RWD ic; EET = Exporte	= radioactive wa d	ste disposed;

¹⁾ Additional information

 $^{\rm 2)}$ Hu stands for (lower) heating value

³⁾ INA: Indicator Not Assessed: the software GaBi 7.3 shows no waste for the databank ecoinvent 3.3 and the ecoinvent-datasets allow no complete registration of the water flows.

TRM Pile System Type 170 x 13.0

Table 24: LCA results: Environmental impacts per pile meter [m] type 170 x 13.0

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1-C4	A1- C4 ¹⁾	D
GWP	kg CO ₂ equiv	53.4	6.31	1.80	0	0	61.6	0
ODP	kg CFC-11 equiv	2.65E-06	1.16E-06	3.11E-07	0	0	4.12E-06	0
АР	kg SO₂ equiv	0.134	3.49E-02	1.31E-02	0	0	0.182	0
EP	kg PO4 ³⁻ equiv	8.83E-02	8.03E-03	3.62E-03	0	0	1.00E-01	0
РОСР	kg C ₂ H ₄ equiv	1.61E-02	3.00E-03	1.39E-03	0	0	2.05E-02	0
ADPE	kg Sb equiv	5.31E-05	1.77E-05	1.17E-06	0	0	7.20E-05	0
ADPF	MJ, H _u ²⁾	652	94.6	25.3	0	0	772	0
Legend GWP = Global warming potential; ODP = Dep Acidification potential of land and water; EP POCP = Formation potential of tropospheric ADPF = Abiotic depletion potential for fossil					on potential of the trophcation pote ne; ADPE = Abiotio urces	e stratospheric o ntial; c depletion poter	zone layer; AP = ntial for non-fossi	l resources;

Table 25: LCA results: Resource unit per pile meter [m] type 170 x 13.0

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1-C4	A1-C4	D
PERE	MJ, H _u	53.0	1.32	0.267	0	0	54.6	0
PERM	MJ, H _u	0	0	0	0	0	0	0
PERT	MJ, H _u	53.0	1.32	0.267	0	0	54.6	0
PENRE	MJ, H _u	700	96.5	25.7	0	0	822	0
PENRM	MJ, H _u	0	0	0	0	0	0	0
PENRT	MJ, H _u	700	96.5	25.7	0	0	822	0
SM	kg	49.8	0	0	0	0	49.8	0
RSF	MJ, H _u	0	0	0	0	0	0	0
NRSF	MJ, H _u	0	0	0	0	0	0	0
FW	m ³	INA 3)	INA	INA	INA	INA	INA	INA
Legend		PERE = Renewa utilization; PER PENRM = Non- SM = Use of sec FW = Use of fre	ble primary ener T = Total Renewa Renewable prim condary material ish water	gy as energy carr ble primary ener ary energy as ma ; RSF = Use of ren	ier; PERM = Rene gy; PENRE = Non- terial utilization; ewable secondar	wable primary e Renewable prim PENRT = Total No y fuels; NRSF = N	nergy resources ary energy as ene on-Renewable pri Ion- renewable se	as material ergy carrier; mary energy; econdary fuels;

Table 26: Output-flows and waste categories per pile meter [m] type 170 x 13.0

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1-C4	A1-C4	D
HWD	kg	INA	INA	INA	INA	INA	INA	INA
NHWD	kg	INA	INA	INA	INA	INA	INA	INA
RWD	kg	INA	INA	INA	INA	INA	INA	INA
CRU	kg	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0 4)	0 4)	0 4)
MER	kg	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0
Legend		HWD = Hazardo CRU =Compone MER = Material Energy thermal	ous waste dispose ents for re-use; N I for energy recov	ed; NHWD = Non IFR = Material for very; EEE = Expor	- hazardous wast Recycling; ted Energy electr	e disposed; RWD ic; EET = Exported	= radioactive wa d	ste disposed;

¹⁾ Additional information

 $^{\rm 2)}$ Hu stands for (lower) heating value

³⁾ INA: Indicator Not Assessed: the software GaBi 7.3 shows no waste for the databank ecoinvent 3.3 and the ecoinvent-datasets allow no complete registration of the water flows.

6 LCA: Interpretation

It should be noted that the impact assessment results are only relative statements that do not include any statements about "end-points" of the impact categories, exceeding of thresholds or risks.

As the definition of raw materials (the substances that remain in the product) and auxiliary substances (the substances that do not remain in the product) is not applicable in this case, as a certain percentage of the energy carrier coke remains in the product, and also as e.g. the input material ferrosilicon or silicon carbide and in addition to that the transport share (A2) is relatively low compared to A1 und A3, there is no splitting of A1-A3.

6.1 Indicators for an impact assessment

The next two charts show the percentage of the modules A1-A3: Production, A4: Transport to the construction site and A5 Installation in the impact categories considered for the piles with the lowest and the highest longitudinal mass.

Bau EPD-TRM-2017-1-ECOINVENT

The difference between the two charts arises basically from the fact that the energy consumption for driving the piles onto the ground may differ due to the soil properties. Thus, only a rough average fuel consumption of the excavator can be estimated. This always identical average value provides different contributions for the individual impact categories depending on the longitudinal mass of the piles.

The production of the piles is the main contribution to all impact categories. As expected, the contribution for the transports is elementary for the ozone-depleting potential, the resource consumption and the acidification is slightly higher than the other indicators. The contribution of the gasoline driven excavator, used for the installation, is relatively high with reference to the indicators ozone-depleting potential, acidification and the photo chemical ozone creation potential.

6.2 Indicators of the Material balance sheet

6.2.1 Primary energy consumption non-renewable and renewable

Figure 5: Dominance analysis of the primary energy for the pile with the lowest longitudinal mass (21.00 kg/m)

This shows the same picture as with reference to the impact indicators. The difference between the two charts, however, is based on the stable numerical value of the energy consumption during installation. The production of the piles requires more energy.

64% of the share of primary energy is due to the Austrian energy mix; 55% is due to the direct usage in the pile production and about 9% is due to the energy requires for scrub treatment in Austria.

6.2.2 Use of fresh water resources

The background data of ecoinvent 3.3 do not allow a full calculation of the use of fresh water resources.

6.2.3 Waste

Software GaBi 7.3 does not create any waste for ecoinvent 3.3.

7 Literature

OENORM EN ISO 14025: 2010 07 01 Environmental labels and declarations – Type III Environmental declarations – Principals and Procedures

OENORM EN ISO 14040: 2009 11 01 Environmental management – Life cycle assessment – Principles and framework

OENORM EN ISO 14044: 2006 10 01 Environmental management - Life cycle assessment - Requirements and guidelines

OENORM EN 15804: 2014 04 15 Sustainability of construction works – Environmental product declaration – Core rules fort he product category of construction products

General guidelines for eco balances and requirements of background reports – PKR-part A, edition 11. April, 2016, Bau EPD GmbH

Requirements for EPD for iron construction products – PKR-part B, edition 2017, Bau EPD GmbH

Eurocode 3 Design of steel constructions (OENORM B 1993)

Eurocode 4 Design of composite steel and concrete structures (OENORM B 1994)

Eurocode7 Geotechnical design (OENORM B 1997)

8 Directory and Glossary

8.1 List of Figures

Figure 1: Flow-chart production process
Figure 2: Orocess Flow-chart during service life
Figure 3: Dominance analysis of impact categories for a pile with the lowest langitudinal mass (21.00 kg/m)
Figure 4: Dominance analysis of impact categories for a pile with the highest langitudinal mass (50.42 kg/m)17
Figure 5: Dominance analysis of primary energy for a pile with the lowest langitudinal mass (21.00 kg/m)18
Figure 6: Dominance analysis of primary energy for a pile with the highest langitudinal mass (50.42 kg/m)18

8.2 List of tables

Table 1: Dimensions	2
Table 2: Product relevant standards	3
Table 3: General technical data for ductil iron piles	3
Table 4: Technical data for ductile cast iron piles depending on dimensions	4
Table 5: Masic materials in mass -%	4
Table 6: Reference service life (RSL)	6
Table 7: Longitudinally related mass	7
Table 8: Parameter list of the scenario "Installation of the product in the building" (A5)"	10
Table 9: LCA results: Environmental impacts per pile meter [m] type 118 x 7.5	11
Table 10: LCA results: Resource inpuper pile meter [m] type 118 x 7.5	11
Table 11: LCA results: Output-flows and waste categories per pile meter [m] type 118 x 7.5	11
Table 12: LCA results: Environmental impacts per pile meter [m] type 118 x 9.0	12
Table 13: LCA results: Resource input per pile meter [m] type 118 x 9.0	12
Table 14: LCA results: Output-flows and waste categories per pile meter [m] type 118 x 9.0	12
Table 15: LCA results: Environmental impacts per pile meter [m] type 118 x 10.6	13
Table 16: LCA results: Resource input per pile meter [m] type 118 x 10.6	13
Table 17: LCA results: Output-flows and waste categories per pile meter [m] type 118 x 10.6	13
Table 18: LCA results: Environmental impacts per pile meter [m] type 170 x 9.0	14
Table 19: LCA results: Resource input per pile meter [m] type 170 x 9.0	14
Table 20: LCA results: Output-flows and waste categories per pile meter [m] type 170 x 9.0	14
Table 21: LCA results: Environmental impacts per pile meter [m] type 170 x 10.6	15
Table 22: LCA results: Resource input per pile meter [m] type 170 x 10.6	15
Table 23: LCA results: Output-flows and waste categories per pile meter [m] type 170 x 10.6	15
Table 24: LCA results: Environmental impacts per pile meter [m] type 170 x 13.0	16
Table 25: LCA results: Resource input per pile meter [m] type 170 x 13.0	16
Table 26: LCA results: Output-flows and waste categories per pile meter [m] type 170 x 13.0	16
Table 27: LCA results: Environmental impacts per per kilogramme [kg] pile	21
Table 28: LCA results: Resource input per kilogramm [kg] pile	21
Table 29: LCA results: Output-flows and waste categories per kilogramme [kg] pile	21

8.3 Abbreviations

EPD	Environmental product declaration
PKR	Product category regulations
LCA	Life cycle assessment
RSL	Reference service life
GWP	Global warming potential
ODP	Depletion potential of the stratospheric ozone layer
AP	Acidification potential of soil and water
EP	Eutrophication potential
РОСР	Formation potential of tropospheric ozone
ADP	Abiotic depletion potential

9 Supplement – Results per kilogramme pile

TRM Piling System

Table 27: LCA results: Environmental impacts per kilogram [kg] pile

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1-C4	A1- C4 ¹⁾	D
GWP	kg CO₂ equiv	1.06	0.125	5.28E-02	0	0	1.24	0
ODP	kg CFC-11 equiv	5.26E-08	2.29E-08	9.17E-09	0	0	8.47E-08	0
AP	kg SO ₂ equiv	2.65E-03	6.91E-04	3.86E-04	0	0	3.73E-03	0
EP	kg PO₄³- equiv	1.75E-03	2.65E-03	6.91E-04	0	0	5.09E-03	0
POCP	kg C ₂ H ₄ equiv	3.19E-04	5.95E-05	4.10E-05	0	0	4.20E-04	0
ADPE	kg Sb equiv	1.05E-06	3.51E-07	3.46E-08	0	0	1.44E-06	0
ADPF	MJ, H _u ²⁾	12.9	1.88	0.746	0	0	15.6	0
Legend		GWP = Global v = Acidification POCP = Format ADPF = Abiotic	warming potentia potential of land ion potential of t depletion potent	al; ODP = Depletic and water; EP = E ropospheric ozor tial for fossil reso	on potential of th Eutrophcation po ne; ADPE = Abioti urces	e stratospheric o tential; c depletion pote	zone layer; AP ntial for non-foss	il resources;

Table 28: LCA results: Resource input per kilogram [kg] pile

Parameter	Unit	A1-A3	A4	A5	B1-B7	C1-C4	A1-C4	D
PERE	MJ, Hu	1.05	0.0262	0.00788	0	0	1.08	0
PERM	MJ, Hu	0	0	0	0	0	0	0
PERT	MJ, H _u	1.05	0.0262	0.00788	0	0	1.08	0
PENRE	MJ, H _u	13.5	1.91	0.758	0	0	16.1	0
PENRM	MJ, H _u	0	0	0	0	0	0	0
PENRT	MJ, Hu	13.5	1.91	0.758	0	0	16.1	0
SM	kg	0.988	0	0	0	0	0.988	0
RSF	MJ, Hu	0	0	0	0	0	0	0
NRSF	MJ, Hu	0	0	0	0	0	0	0
FW	m ³	INA ³⁾	INA	INA	0	0	INA	0
PERE = Renewable primary energy as energy carrier; PERM = Renewable primary energy resources as mat utilization; PERT = Total Renewable primary energy; PENRE = Non-Renewable primary energy as energy ca PENRM = Non- Renewable primary energy as material utilization; PENRT = Total Non-Renewable primary energy as SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Non- renewable secondary FW = Use of fresh water						as material ergy carrier; imary energy; econdary fuels;		

Table 29: LCA results: Output-flows and waste categories per kilogram [kg] pile

Parameter	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1-C4	A1-C4	D
HWD	kg	INA	INA	INA	INA	INA	INA	0	0	INA	0
NHWD	kg	INA	INA	INA	INA	INA	INA	0	0	INA	0
RWD	kg	INA	INA	INA	INA	INA	INA	0	0	INA	0
CRU	kg	0	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0 4)	0 4)	0 4)
MER	kg	0	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0,993	0,993	0	0	0	0	0,993	0
Legend		HWD = Hazardous waste disposed; NHWD = Non- hazardous waste disposed; RWD = radioactive waste disposed; CRU =Components for re-use; MFR = Material for Recycling; MER = Material for energy recovery; EEE = Exported Energy electric; EET = Exported Energy thermal									

¹⁾ additional information

²⁾ Hu stands for (lower) heating value

³⁾ INA: Indicator Not Assessed: the software GaBi 7.3 shows no waste for the databank ecoinvent 3.3 and the ecoinvent-datasets allow no complete registration of the water flows.

Bau-EPD	Publisher Bau EPD GmbH Seidengasse 13/3 1070 Vienna Austria	Tel Mail Web	+43 699 15 900 500 office@bau-epd.at www.bau-epd.at
Bau-EPD Saustoffe mit Transparenz	Programme operator Bau EPD GmbH Seidengasse 13/3 1070 Vienna Austria	Tel Mail Web	+43 699 15 900 500 office@bau-epd.at www.bau-epd.at
Tompeters StaDt+Wien	Author of the Life Cycle Assessment DiplIng. Dr. techn. Ilse Hollerer Magistrate of the City of Vienna Magistratsabteilung 39 Rinnböckstraße 15 1110 Vienna	Mail Tel Fax Mail Web	ilse.hollerer@wien.gv.at +43 (1) 79514 39265 +43 (1) 79514 99 8039 post@ma39.wien.gv.at www.ma39.wien.at
R PILING SYSTEMS	Owner of the declaration Tiroler Rohre GmbH Innsbruckerstraße 51 6060 Hall in Tirol Austria	Tel Fax Mail Web	+43 5223 503 0 +43 5223 436 19 office@trm.at www.trm.at